Theodore B. Taylor: About Face

Theodore B. Taylor was in his twenties when he invented the S.O.B., the largest-yield fission bomb ever exploded. Throughout the Fifties, his theoretical ideas for bombs were used to develop the smallest and most efficient atomic bombs of that era. Besides building them, he also calculated the potential effects of the bombs. When he realized his S.O.B. could wipe out most — but not all — of Moscow, he was frustrated.
“I spent some sixteen years knowing directly the intense exhilaration and sense of personal power that comes from deep involvement in the conception, testing and deployment of new types of nuclear weapons,” Taylor has said. Although he received a D in physics at Exeter and twice failed his oral exams for his doctorate at Berkeley, a professor got him a job at Los Alamos Scientific Laboratory, in New Mexico, where nuclear bombs had been under development since soon after the start of the Manhattan Project in 1943. He is modest about his work there. “What I did shouldn’t be overrated,” he says. “I was responsible for thinking up new concepts and analyzing the effectiveness of old weapons or weapons in the conceptual stage. I worked at a desk with a hand calculator. I knew only rudimentary hydrodynamics. I was not a particularly good physicist, certainly not a particularly good mathematician. But I think I have shown that I have some knack for connecting ways that people now do things with ways they might do them. I would analyze the results of tests and think, ‘Why do we stop there?’ I’d draw circles in my very crude high-school way, then go to somebody in the high-explosive division and say, for example, ‘Just for the hell of it, suppose we talk about an implosion system that is eighteen inches in diameter. We’ll probably have to go to half as many detonators, since you can’t scale the detonators down. What do you think?’ Then I’d go and talk to someone in the chemistry-metallurgy department and say, ‘Look, to make this, we’re going to have to make a very thin shell out of plutonium. Do you think it’s crazy?’ Nine months later he came in and opened up a box and said, ‘Here.’ It was the plutonium shell that made an eighteen-inch bomb possible. It was an incredibly exciting environment.”
After his Los Alamos tenure, Taylor worked at General Atomic, in San Diego, where he coinvented the TRIGA research reactor — a nuclear reactor that shuts itself down when it gets too hot — and spearheaded Project Orion, the conception and preliminary design of a spacecraft, sixteen stories high, powered by nuclear explosions. The project was canceled in 1965 for political reasons — there was the ban on atmospheric nuclear testing, for one thing — not because Orion wouldn’t have worked. Next, Taylor worked as a deputy science director at the Defense Atomic Support Agency (now the Defense Nuclear Agency), in Washington, D.C., managing its nuclear-weapons-effects research and test program with an annual budget of some $100 million. It was there, inside the government, where he was privy to highly classified documents, that he became disillusioned — terrified about the prospects for control of the arms race and, especially, about the danger of nuclear proliferation and terrorism. He was convinced that security of nuclear technology and nuclear materials was so lax it was likely a terrorist group that wanted to build a nuclear bomb could do so. He spent a year fighting within the government for strict safeguards, and in 1966, his impassioned pleas having fallen on deaf ears, he went public. With lawyer Mason Willrich (who had once copiloted a B-47 nuclear bomber), Taylor wrote Nuclear Theft: Risks and Safeguards. He was also immortalized in John McPhee’s book The Curve of Binding Energy, which shows, in alarming detail, how easily a homemade bomb can be built.
Taylor now works as an independent consulting physicist, based in Damascus, Maryland. His obsession is an end to the nuclear threat he helped create. He has testified before Congress against nuclear power and for nuclear disarmament. He served on the presidential commission that investigated the mishap at Three Mile Island. He has conferred with Soviet scientists and politicians promoting test bans and ultimate disarmament. In addition, Taylor seeks to make nuclear power obsolete by working to discover alternative, renewable energy systems.
Taylor is a handsome sixty-two-year-old with a full head of swept-back silver hair, intense brown eyes and a Karl Maiden nose. In the kitchen of his modest home, which he shares with his wife, Caro, is a clue to a fundamental motivation for his vigorous antinuclear passion: on a wall is drawn a ruler, dirtied with dozens of pencil marks indicating the heights of his five children and nine grandchildren over a period of some dozen years. “We’ve got to be sure we don’t screw up the world for them,” he says. “With nuclear materials, there’s no second chance.”
The U.S. has 25,000 or so nuclear warheads deployed worldwide, some of them, we presume, your creations.
The actual weapons I designed are outdated or have been totally revised. However, all current-generation nuclear bombs incorporate some aspects of what I was working on when I was at Los Alamos.
Which included … ?
Many aspects of the development of bombs, pushing current technologies to the limits, from miniaturization on one hand, to exploring the outer reaches of high-yield weapons on the other. I worked mostly on fission bombs, but even the most modern H-bombs are triggered by fission.
Where have we gone from there?
Obviously, the yields of H-bombs are higher. The Soviets tested a 60-megaton bomb, and if they had wrapped it in a natural uranium blanket, it would have been closer to 100 megatons. They didn’t dare go that high because of fallout problems. For a while there was a push here for that big of a bomb, but it was completely impractical for a couple of reasons. It was very heavy, which wasn’t the main problem. The main problem was that you couldn’t get the airplane that dropped the bomb out of the way fast enough. Smaller hydrogen bombs were big enough. The scary thing about the new biological poisons is that they can be based on genetic engineering. You can imagine where that could lead.’
What are both sides testing now?
I have no idea what either side is doing. I know only that the U.S. test on February 3rd was extremely low yield. It was the test that essentially started a whole chain of events. The Soviets had said they would extend their moratorium on testing until we began testing again. We paid no attention to that statement and went ahead and shot off a very low-yield bomb, .01 to .05 kilotons. Those were the reported sizes. That is one-thousandth the yield of the bomb that destroyed Nagasaki.
What are they looking for in a test that small?
Probably new ways of enhancing certain forms of energy that are generated in nuclear explosions, for purposes that are mostly aimed at Star Wars — either weapons that could be used by the Star Wars system for destroying missiles, or weapons that might be used to destroy Star Wars components. You have to play it both ways. If you’ve got a way of defending yourself against something, there are always countermeasures against that. One countermeasure might be nuclear weapons that put out forms of energy that are damaging particularly to the parts of Star Wars — tracking equipment, very complicated computers, communications systems — that are likely to be relatively easy to disrupt.