.

Goodbye, Miami

Page 2 of 5

South Florida has two big problems. The first is its remarkably flat topography. Half the area that surrounds Miami is less than five feet above sea level. Its highest natural elevation, a limestone ridge that runs from Palm Beach to just south of the city, averages a scant 12 feet. With just three feet of sea-level rise, more than a third of southern Florida will vanish; at six feet, more than half will be gone; if the seas rise 12 feet, South Florida will be little more than an isolated archipelago surrounded by abandoned buildings and crumbling overpasses. And the waters won't just come in from the east – because the region is so flat, rising seas will come in nearly as fast from the west too, through the Everglades.

Even worse, South Florida sits above a vast and porous limestone plateau. "Imagine Swiss cheese, and you'll have a pretty good idea what the rock under southern Florida looks like," says Glenn Landers, a senior engineer at the U.S. Army Corps of Engineers. This means water moves around easily – it seeps into yards at high tide, bubbles up on golf courses, flows through underground caverns, corrodes building foundations from below. "Conventional sea walls and barriers are not effective here," says Robert Daoust, an ecologist at ARCADIS, a Dutch firm that specializes in engineering solutions to rising seas. "Protecting the city, if it is possible, will require innovative solutions."

Those solutions are not likely to be forthcoming from the political realm. The statehouse in Tallahassee is a monument to climate-change denial. "You can't even say the words 'climate change' on the House floor without being run out of the building," says Gustafson. Florida Sen. Marco Rubio, positioning himself for a run at the presidency in 2016, is another denier, still trotting out the tired old argument that "no matter how many job-killing­ laws we pass, our government can't control the weather." Gov. Rick Scott, a Tea Party Republican, says he's "not convinced" that global warming is caused by human beings. Since taking office in 2011, Scott has targeted environmental protections of every sort and slashed the budget of the South Florida Water Management District, the agency in charge of managing water supply in the region, as well as restoration of the Everglades. "There is no serious thinking, no serious planning, about any of this going on at the state level," says Chuck Watson, a disaster-­impact analyst with longtime experience in Florida. "The view is, 'Well, if it gets real bad, the federal government will bail us out.' It is beyond denial; it is flat-out delusional."

Local governments, including Broward and Miami-Dade counties, have tried to compensate by forging regional agreements to cut carbon pollution and upgrade infrastructure to make their cities more resilient, but without help (and money) from the state and federal governments, it's pretty ineffective. Given how much Florida has to lose from climate change, the abdication of leadership by state and federal politicians is almost suicidal – when it isn't downright comical. Watson recalls attending a meeting on natural-hazard-response planning in South Florida, funded by the Federal Emergency Management Agency and the state: "I mentioned sea-level rise, and I was treated to a 15-minute lecture on Genesis by one of the commissioners. He said, 'God destroyed the Earth with water the first time, and he promised he wouldn't do it again. So all of you who are pushing fears about sea-level rise, go back and read the Bible.'"

Rising seas will present an escalating series of challenges, most of which, on their own, will appear to be manageable. It's not hard to see how it will play out: As each new crisis arises, engineers will propose expensive solutions and people may be fooled into thinking that sea-level­ rise is not such a big deal. But in many cases, sea-wall extensions and elaborate pumping and drainage systems will turn out to be giant boondoggles, with money shoveled out to politically connected contractors for projects that are ineffective or overwhelmed by continually rising seas. "Engineers want to sell solutions, and often that means downplaying the seriousness of the problem in the long term," says Wanless.

One of the first consequences of rising seas will be loss of drinking water. In fact, it's already starting to happen. Nobody understands this better than Jayantha Obeysekera, the chief modeler for the South Florida Water Management District, who is known to everyone as "Obey." The water-control system in Florida is crazily complex, even to people whose business it is to understand it. One recent hot morning, Obey and I visited several dikes and canals in the Miami area.

Our first stop was a big steel gate – in water-management parlance, it's called a "salinity-control structure" – in a poor black neighborhood in North Miami. We turned off a busy four-lane road and drove through a grassy area littered with soda bottles and plastic bags, stopped at the gate and stood at the edge of a 30-foot-wide canal. Three manatees floated lazily in the stagnant water. This canal, like hundreds of others in South Florida, was dredged in the early 20th century to allow water to drain out of the Everglades. The canals worked fine for a while, lowering the water level in the swamp enough to allow developers to pave them over and make millions selling the American Dream to sun-starved suburbanites. But then by the 1950s, people started noticing their drinking water was getting salty. In South Florida, the drinking-water supply comes from a big lake just below the surface known as the Biscayne aquifer. Engineers examined the situation and determined that the combination of draining the swamps and pumping out the aquifer had changed hydrostatic pressure underground and allowed salt water to move into the aquifer. To stop this, the Army Corps of Engineers and the South Florida Water Management District built dozens of these salinity-­control structures at key points on the canals. When they were closed, salty water wasn't able to flow into the canals. But if there was a big storm and intense flooding, the gates could be opened to allow drainage.

That worked pretty well for a time. The gates were engineered so that, when they were closed, the fresh water was about a foot and a half higher than the salt water. This freshwater "head" (as engineers called it) helped keep pressure in the aquifer and kept the salt water at bay.

But in the 50 years since the structures were built, much has changed. For one thing, nearly 80 percent of the fresh water flowing into the Everglades has been diverted, some of it into industrial-­agriculture operations. At the same time, consumption has skyrocketed: The 5.5 million or so people who now live in South Florida consume more than 3 billion gallons of water every day (including industry and agriculture). Almost all of that is pumped out of the aquifer, drawing it down and allowing more and more salt water to move in. At the same time, the sea level is rising (about nine inches since the canals were first dredged), which also helps push more salt water into the aquifer.

"Here, you can see the problem," Obey says, pointing to the saltwater side of the gate. "The water is only 10 inches lower on this side than on the canal. When this structure was built in 1960, it was a foot and a half. We are reaching equilibrium."

Obey explains that when there is a torrential rain (a frequent occurrence) and inland Florida floods, there is nowhere for the water to go. Cities on the western edge of Miami-Dade County, such as Hialeah and Sweetwater, are now at risk of massive flooding with every big storm. To solve this, the South Florida Water District is installing pumps on the freshwater side of the control structures on the canals. The pumps, which cost about $70 million each, can take the runoff water from storms and pump it into the ocean to alleviate flooding.

But stopping saltwater incursion is more difficult. The town of Hallandale Beach, just a few miles north of Miami, had to close six of its eight wells due to saltwater intrusion. The town now buys half its water from a well field in Broward County and is working on a deal to drill six new wells of its own, at a cost of about $10 million. Fort Lauderdale has also faced saltwater intrusion, as has Lake Worth, a community just south of Palm Beach. "In the long run, the whole area is likely to have problems," Obey says.

The conventional solution to this was simple: Drill new drinking wells farther west, away from the salty water. The trouble is, engineers have done that already and can't move any farther west without running into the Everglades. Instead, engineers are now turning to more radical solutions, such as trying to capture storm water and store it underground, or reuse water from sewage-­treatment plants. This will help, but ultimately South Florida is likely to rely more and more on desalination, a complex industrial-­scale process that eliminates the salt from the sea water. Right now, South Florida has 35 desalination plants operating, with seven more under construction. They have the capacity to produce 245 million gallons of potable water per day. But desalinization is expensive and requires huge amounts of energy. In 2008, the city of Tampa opened a new $158 million desalination plant, one of the largest in the nation, which produces up to 25 million gallons of fresh water a day – about 10 percent of the region's water needs. Construction costs alone will run about $6 billion to desalinate just one-third of the water used for southern Florida.

For many cities in South Florida, securing a reliable supply of drinking water is going to be a heavy financial burden. "South Florida is not going to run out of drinking water," says Fred Bloetscher, an associate professor of civil engineering at Florida Atlantic University. "But it will be an expensive fix." Bloetscher estimates it will cost upward of $20 billion to $30 billion to re­plumb South Florida and armor it with pumps and a stormwater-recapturing system to deal with a three-foot sea-level rise. And when the waters keep rising? "Well, you just have to believe that we will come up with some kind of a solution," Bloetscher says.

Later in the day, Obey and I visit another gate along what was once the Miami River. Today, it has been dredged and transformed into a charmless canal. Obey shows me the new pumps that were recently installed on the structure to control flooding in the area. We are standing on the east side of the structure, where the sea bumps against the steel gates. I ask Obey if he can imagine a day when South Floridians find themselves surrounded by the water but with no clean fresh water to drink. "I do not have an answer to that question," he says modestly. "Right now, I'm focused on the next decade or two. That will be difficult enough."

To read the new issue of Rolling Stone online, plus the entire RS archive: Click Here

prev
Politics Main Next

blog comments powered by Disqus
Around the Web
Powered By ZergNet
Daily Newsletter

Get the latest RS news in your inbox.

Sign up to receive the Rolling Stone newsletter and special offers from RS and its
marketing partners.

X

We may use your e-mail address to send you the newsletter and offers that may interest you, on behalf of Rolling Stone and its partners. For more information please read our Privacy Policy.

 
www.expandtheroom.com