Can Geoengineering Save The World?

Page 5 of 5

Scientists routinely use such computer models to test the effects of various climate-related scenarios, from rising CO2 levels to the impact of deforestation on global warming. After several weeks of running a climate simulation on Stanford's superfast computer network, Caldeira concluded that shading the sunlight directly over the polar ice cap by less than twenty-five percent would maintain the "natural" level of ice in the Arctic, even with a doubling of atmospheric CO2 levels. Push the shading up to fifty percent, and the ice grows. Even better, the restoration happens fast: Within five years, the temperature would drop by almost two degrees.

The modeling results interested Wood. He calculated that it would take roughly 300,000 metric tons of particles each year to shade the sunlight in the Arctic by twenty-five percent – a tiny amount, on a planetary scale. As for how to get those particles up there, Wood thinks that a half-dozen 747s could do the job. Even better, you could build a Kevlar tube fifteen miles long, with a diameter slightly larger than a garden hose. The bottom of the hose would be connected to a combustor that created the aerosols, while the top would be held in place by high-tech kites or a high-altitude airship that the Defense Department is developing. "It's nothing more than a fancy blimp," Wood says.

In Wood's view, this was a no-brainer. You could stabilize the ice, save the polar bears and demonstrate the virtues of planetary engineering for less money than it takes to feed and clothe the soldiers in Iraq for a year. Because the aerosols are launched only over the Arctic, there is little danger of directly impacting humans. And best of all, you can try it for a few years and see if it works. If something goes wrong, you can quit, and within a year or so, all the particles will have dissipated, returning the region to its "natural" state.

But getting the science right may be the least of it. As Benford, the sci-fi writer, told me, "All the real complexity is in the politics." It would take years to reach international consensus for an actual experiment, much less to secure funding. A serious discussion of geoengineering would likely spark worldwide protests: Americans would be seen as toying with the integrity of the Earth's climate just so we don't have to give up our SUVs. To expedite things, Wood speculates about getting private funding for a small-scale experiment from someone like Paul Allen, the Microsoft billionaire, whom he knows slightly because of Allen's interest in space travle. "As far as I can determine," Wood says, "there is no law that prohibits doing something like this." But he also knows that the last thing someone like Allen wants is to mess with the Earth's climate. BILLIONAIRE KILLS MILLIONS WHEN GLOBAL ENGINEERING SCHEME GOES AWRY. It's safer to stick with building football stadiums and rock & roll museums.

To his credit, Wood believes the decision to move beyond research and actually implement a large-scale geoengineering project must not be made by scientific elites. "Let's debate fully," he says. "Then let's all vote." But even if fundning is somehow obtained and experiments are successful, it would only open the door to an even more complex question: Whose hand will be on the global thermostat? The Inuits won't like the idea of a warming Arctic, but the Russians might not mind – it could open shipping lanes, make oil and gas exploration easier and boost agricultural productivity in places like Siberia. "Will we have Greenland and Bangladesh arguing over the 'right' temperature?" says Richard Alley, the Penn State paleoclimatologist. "Will your neighbor try to sue somebody if the tomatoes freeze?" And once you commit to countering the rise of CO2 emissions with a geoengineering scheme, Alley adds, you're hooked. "This is not something you can do for twenty or thirty years, then quit," he says. "It's a techno fix we'd become dependent on." Even Caldeira views geoengineering as, at best, a way to buy time to develop clean energy technologies. "As a long-term strategy," Caldeira says, "it's nuts."

Despite such obstacles, Wood believes that geoengineering the climate is inevitable, if only because politics and economics will demand it. Geoengineers, he says in a recent e-mail, will just have to wait patiently until the "political elites" decide that it is in their best interest to act. Once they realize that geoengineering is the cheapest solution, he predicts, "they'll swiftly & reliably beat a bath to the Geoengineering Door. :-) The future is ours, Comrades – history (well geophysics & economics is on Our Side! :-)"

Perhaps. Or perhaps Wood is still entranced by the sound of rockets he heard in the California hills when he was a kid. Unlike many of his peers, Wood retains an unshakable faith in technology as a tool to reshape the world to our liking. "Isn't agriculture a form of geoengineering?" he says. "How about building houses, installing air conditioning, building roads? Where do you draw the line between what is acceptable and what isn't? We've engineered every other environment we live in – why not the planet?"

Hell, as long as we're at it, why not engineer other planets? For Wood, the promise of geoengineering extends all the way to Mars, where he hopes to see human settlement one day. Indeed, according to physicist Marty Hoffert, who has known Wood for decades, restoring the Earth's climate is just "the first stop" in Wood's grander ambition to terraform the Red Planet. "It is the manifest destiny of the human race!" Wood declared at a space convention once. "In this country we are builders of new worlds... We took a raw wilderness and turned it into the shining city on the hill of our world."

Of course, we also raped and pillaged that raw wilderness along the way, heating up the planet to a point where vast sections of it could become uninhabitable. But in Wood's view, that may be the price of progress. Like his mentor Edward Teller before him, Wood is the embodiment of a certain kind of hubris, a Promethean figure whose relentless pursuit of Big Science helped bring us a thumb-twitch away from Armageddon. But in his oddly sunny view, no global destruction wreaked by global warming – or, for that matter, by his own brazen ideas to counteract it – could ever be so great that we, in all our ingenuity, will not find a way to fix it.

"Human beings are like cockroaches," Wood says with typical black humor. "It's fairly easy to kill the first ten percent of the population. And if you try really hard, you might even get the next ten percent. But no matter what you do, you'll never get that last ten percent. We will find a way to survive."

This story is from the November 16, 2006 issue of Rolling Stone.

To read the new issue of Rolling Stone online, plus the entire RS archive: Click Here

Politics Main Next

blog comments powered by Disqus
Around the Web
Powered By ZergNet
Daily Newsletter

Get the latest RS news in your inbox.

Sign up to receive the Rolling Stone newsletter and special offers from RS and its
marketing partners.


We may use your e-mail address to send you the newsletter and offers that may interest you, on behalf of Rolling Stone and its partners. For more information please read our Privacy Policy.