Can Geoengineering Save The World?

Page 3 of 5

But the X-ray laser turned out to be a debacle, done in by engineering problems, cost overruns and the fall of the Soviet Union. All told, $60 billion was blown on the Star Wars program – with little to show for it. Wood, however, believes that those billions helped make the world a safer place. When I asked him what he was most proud of in his career, he e-mailed back, "I'm most proud of the assuredly small but perhaps non-negligible role which my many colleagues and I played in the downfall of the Soviet Union, the mainstay of 'Red fascism' and the dominant geopoliticomilitary threat to large-scale human welfare of our time."

By the time Star Wars collapsed, Teller was in his mid-eighties, increasingly reclusive, shunned and bitter. But he had not quit applying his brain to big problems. One that interested him: What would happen to the human race during the next ice age? At the time, most scientists believed that climate cycles would inevitably return the planet to a deep freeze, and Teller and Wood began to hash out ways to modulate the planet's reflectivity – effectively enabling humans to raise or lower the Earth's temperature at will.

They were not breaking new ground. In the 1940s, American and Soviet scientists began exploring high-tech methods of manipulating the weather and, eventually, the planet's climate. In 1992, a report by the National Academy of Sciences found that increasing the reflectivity of the Earth by just one percent would be enough to compensate for doubling levels of carbon dioxide in the atmosphere. The report examined various ways to achieve the goal, from placing a giant screen in front of the sun to launching zillions of tiny space balloons to redirect sunlight. But the most intriguing approach, first suggested by Russian geophysicist Mikhail Budyko in the 1970s, was that of filling the stratosphere with particles to reflect sunlight. Humans could essentially create a device to mimic nature's own climate-cooling system: volcanoes. The largest eruption on record, Indonesia's Mount Tambora in 1815, caused such drastic cooling that the aftermath was known as the "year without summer." In 1991, when Mount Pinatubo erupted in the Philippines, it dropped the region's average temperature by nearly one degree. Moreover, the climatic effects of an eruption can last a long time, cooling the oceans for decades.

Teller and Wood simply took a dreamy idea and engineered it for real life. They determined that tiny particles – only one-tenth the diameter of the smallest dust mote visible to the human eye – would be most effective at scattering sunlight. These particles could be engineered out of some nonreactive metallic substance, such as aluminum, or generated from sulfur, a substance readily available as a byproduct of oil refining. As Wood and Teller pointed out, cooling the entire planet with aerosolized particles would cost only $1 billion a year – nearly 100 times cheaper than the cost of cutting CO2 emissions. What was not to like?

Plenty, of course. When Wood presented the idea to a room full of climate scientists at a 1998 conference at the Aspen Global Change Institute in Colorado, he hardly received a rousing welcome. "I was stunned to see Lowell Wood – the grandest of Cold Warriors – talking about global warming," says David Keith, a physicist at the University of Calgary in Alberta with a long-standing interest in the moral and technical complexities of geoengineering. Like other scientists in the room, Keith was well aware of Teller's past scheme to blast canals and harbors with nuclear bombs. Now the old man's protege was proposing to save the planet with a giant dust cloud?

In Wood's presentation, there was precious little talk of potential side effects of this new scheme, such as how it might affect the oceans or the notoriously complex chemistry of the upper atmosphere. At one point, recalls Ken Caldeira, Wood even joked that the best way to stop global warming was to start a nuclear war. "It was pretty outrageous," Caldeira admits. "But now I realize it was just Lowell playing provocateur."

After Wood's presentation, Caldeira was dubious. As a climate modeler, he knew that heat from sunlight was different than heat trapped in the atmosphere by a thicker blanket of CO2, and he believed that Wood's scheme might inadvertently blur the temperature differences between night and day, reduce seasonal changes and disrupt the spread of heat between the equator and the poles. Determined to prove his point, Caldeira checked it on a highly sophisticated computer model of the Earth's climate. After running the simulation for several months, he was startled by the results: Injecting particles into the stratosphere would have little effect on local climates. Wood's calculations, it turned out, were correct.

Despite its near-mythological status as the dark heart of weapons research, the Livermore nuclear lab looks like any other big industrial facility – a collection of low, brown buildings about a half-hour east of Berkeley, surrounded by strip malls and rolling hills. Inside, the grounds feel like a community-college campus – albeit one with brightly marked radiation shelters every few hundred feet. On the day I arrived at the lab, the conference room where I was to meet Wood for the first time was empty. A few minutes later, I noticed what looked like a janitor struggling with a lock on the side door. His blue shirt was untucked, and sweat beaded on his forehead. I thought he had come to clean the room. Only when I looked at his badge did I realize it was Wood, the great weaponeer.

At times, Wood seems like a caricature of an absent-minded professor: disheveled, distracted, his pockets stuffed with odd bits of paper. In the 1960s, colleagues hid a lead brick in his briefcase; Wood toted it around for days without noticing it. They tell stories about him picking locks on jetways when he missed his flight, or chartering private planes to rush him to nuclear test sites. Although he has a reputation as a bad-boy physicist, his e-mails are punctuated with emoticons and smiley faces.

When Star Wars tanked, Wood became, as one Livermore alumnus puts it, "a pariah." With the Soviet Union gone, he needed a new enemy to fight, one that came with federal funding attached. Lately, terrorism has fit the bill. "Threats are my business," he says. "I help the government figure out who can kill us, and how; and when." Although officially retired, Wood still has an office at Livermore; his top concern at the moment is the outbreak of an engineered pandemic, such as anthrax or smallpox. He also chaired a congressional commission that investigated the risk of attack from an electromagnetic pulse bomb – basically, a nuke that explodes at high altitude, leaving people unharmed but disabling every power line and computer and electrical device in the country.

For a guy who spends many of his waking hours dreaming up ways to fight terrorists, Wood seems remarkably cheerful. One day in September, when we meet for lunch in Silicon Valley, the arrest of twenty-four suspected bombers in England has grid-locked airports worldwide. But Wood, who has spent the morning on the phone with government officials assessing the threat, only marvels at the unoriginality of the plot. "It's an oldie but goodie," he says, pointing out that Al Qaeda bomber Ramzi Yousef tried to bring down a Philippine airliner in 1994 using a similar device assembled from liquid explosives. "If this is the best they can come up with…"

For a moment, he seems to regret the glory days of the Soviet empire, when he at least had an adversary worthy of engagement. He laughs off the notion that either North Korea or Iran is capable of lobbing a missile at us. "Give me a break," he says. "These aren't threats. These are annoyances."

Wood is equally unimpressed by President Bush. "He's no Ronald Reagan, that's for sure," he says. In 2004, during testimony before the House Committee on Armed Services, Wood did not mince words about the administration's failure to muster a timely response to 9/11. "More time has lapsed since the 9/11 attack and the present day than elapsed between Leslie Groves taking over the brand-new Manhattan Project and the nuclear raids on the Japanese that ended World War II," Wood noted. "Yet we Americans are still cowering under vague but stern threats from our imperfectly informed national leadership in the war against global terror."

Because of the classified nature of his work, Wood is reluctant to talk about his personal life beyond the fact that he's married and has a teenage daughter (who, not surprisingly, is a math prodigy). He discusses his government research only in person or on secure phones or faxes, never via e-mail. Although he sometimes works as a corporate consultant, money clearly isn't of much interest to him (he drives a dusty, sagging Toyota 4Runner). He goes out of his way to make the point that all the work he has done on geoengineering has been on his own time, not at taxpayer expense.

That may be true, but as Wood knows, climate engineering has often been little more than an extension of weapons re-search. In the 1940s, the discovery that "seeding" clouds with silver iodide crystals would create rain led American military strategists to dream of someday fighting wars with hurricanes and thunderstorms. During the Vietnam War, the U.S. military used cloud seeding in an attempt to increase rainfall over the Ho Chi Minh Trail – a secret program that prompted the United Nations to ban "environmental modification techniques" as weapons. Wood considers the issue moot. "As a tool of warfare," he says, "weather modification has been a complete failure."

To read the new issue of Rolling Stone online, plus the entire RS archive: Click Here

Politics Main Next

blog comments powered by Disqus
Around the Web
Powered By ZergNet
Daily Newsletter

Get the latest RS news in your inbox.

Sign up to receive the Rolling Stone newsletter and special offers from RS and its
marketing partners.


We may use your e-mail address to send you the newsletter and offers that may interest you, on behalf of Rolling Stone and its partners. For more information please read our Privacy Policy.